

[City to City Knowledge Exchange Programme]

Implementation Strategies for Smart Integrated Mobility Management System and Evidenced Based Urban and Transport Planning for Iskandar Malaysia

> By Maimunah Jaffar Director Technology and Innovation Iskandar Regional Development Authority (Iskandar Malaysia – An Economic Region in Malaysia)

- Smart Integrated Mobility Management System, the project
- Iskandar Malaysia, the location for the project

- Main deliverables and Current project
 Status
- Challenges, Intervention and Lesson Learnt

Mobility as Key Urbanization Challenges for the

Region

- Case for Action

- IM experiencing a rapid growth in population, to reach about 3 million by 2025, from 1.5 mil in 2005 and currently at 2.1 mil population – excluding Singapore visitors
- Currently Limited reliable public transportation options, have significant effect on the mobility of people and goods,
- Beside providing Bus Rapid Transit in near future, a long-term solution required to optimise transportation network and services to move people and goods within IM and neighbouring country
- Integration and mobility improvement is a key focus and the Global Future Cities Programme (GFCP) aims to address this through the Iskandar Malaysia Project.

What is SIMMS - Smart Integrated Mobility

Management System?

Integrated Mobility Management System

Bringing it all together as SIMMS:

 a system that uses data (via smart technologies and Integrated Transportation System component) to allow for management of transportation networks in Iskandar Malaysia.

The Global Future Cities Programme deliver two interventions for Iskandar Malaysia

- 1. Provide an Implementation Strategy for a Smart Integrated Mobility Management System (SIMMS)
 - Optimise road network.
 - Minimise traffic congestion, reduce GHG, air & noise pollution.
 - Attain efficiency gains for travel time and cost, mobility management.
 - Allow data collection for Evidence based Urban and Transport Planning (E-bUTP).

- 2. Create Enabling Conditions for Data Utilisation and Management for Evidence-based Urban and Transport Planning (E-bUTP)
 - Integrate and utilise data for sustainable planning.
 - Improved understanding of travel needs of GESI groups.
 - Better understanding of how to promote modal shift to public transport.
 - Efficiency gains in planning processes.
 - Data sharing across different sectors & authorities.

Global and Regional Context

- Established in 2006.
- An economic development corridor in the **Southern Johor, Malaysia**.
- Encompasses an area of 2,217 sqkm, which is 3 times bigger than Singapore.

The 7 Output for SIMMS - Iskandar Malaysia

Output 1 : Baseline Assessment and Analysis

- cost, governance

<u> Draft / Work in progress</u>

Output 5: Operational, Business & Financial Model

Source: Mott Macdonald SIMMS – Global Future Cities Program 2021

• Framework Development for SIMMS and for Data Utilisation and Management for Evidencebased Urban and Transport Planning

Output 4 : Governance Framework

Identification of Existing Tools
 Development of Monitorina & Evaluation Framework
 Image: A constraint of the state of the

Draft / Work in progress

Output 7: Monitoring Framework and social, Environmental and Economic Impact Assessment

Output 2: Intervention 1 - Implementation Strategy for SIMMS and ITS Masterplan and Implementation Plan

draft/work in progress

Source: Mott Macdonald SIMMS – Global Future Cities Program 2021

Output 3: Intervention 2 - Creating enabling conditions for data utilisation and management for evidence based urban and transport planning

draft/work in progress

- Definition of Success Factors
- Technical Design to Enable
 Data Utilisation
- Capacity Building
- Technical Design to Enable Data Utilization
- Technical Specifications for Tender Documents
- Smart GIS

Source: Mott Macdonald SIMMS – Global Future Cities Program 2021

* Synthetic Data, ** Survey Data

Quality of Life - Environment and Safety

draft/work in progress

Project Selection

- Pilot project design -
 - Traffic modelling, \geq
 - ITS Hardware Control Centre Layout,
 - ITS software,
 - Smart GIS,
 - Integration, Test, Commission and Launch SIMMS

- Allows rapid interrogation of the data without having to go into the dashboard for a more
- Graphs are dynamic and change with viewable area of map

example of the application of the mesoscopic model

Transport Model on Pilot area

Source: Mott Macdonald SIMMS – Global Future Cities Program 2021

Draft / Work in progress

Smart GIS pilot for Spatial Management

GESI - Gender, Equality & Social Inclusion

as SDG tools

Source: UN Habitat –GESI program for SIMMS

Interventions 1 & 2 are expected to have a variety of interlinked GESI, environmental and economic impacts such as:

- Gender, Equality & Social Inclusion (GESI) is built into SIMMS, with improved mobility leading to reduced travel costs & duration, improving accessibility particularly for low-income users;
- Empowerment of women, persons with disabilities (PWDs), low income and other marginalised groups in the mobility and data sectors through capacity building;
- A healthier and less stressful urban environment due to increased road safety, reduced air and noise pollution, and more sustainable and evidence-based urban and transport planning.

SDG 11

- More economically sustainable urban and transport planning, and efficiency gained in planning processes due to data sharing across agencies and departments;
- Increased connectivity between residential and economic areas and reduced travel times, which contributes to the overall productivity; and improved employment and income prospects.

Lesson Learnt

Challenges

- 1. Understanding of overall concept for SIMMS, buy in and inclusiveness
- Integrated Mobility
 Management is a new concept; not many stakeholders expose to the concept
- Unsure if the project can enhance mobility in IM
- Concern if the mobility system cater for different types of communities

Intervention

- Formation of Technical and Steering Comm for ownership and buy in
- Continuous stakeholder engagement
- Awareness and capacity building focus
- Formed community driven group to champion – GESI

Mobile base on line survey

- Engagement to be small and focus
- Capacity building at earlier stage to ensure understanding
- Key success for project depend on stakeholders and community participation as they are end user and provide input to the user requirement needs

Lesson Learnt

14

Challenges

2. Data gathering, sharing and privacy

- Data in not the same attributes of data set
- Data not able to share between operators and agencies
- Resistant to sharing of data as lack understanding of data usage
- Data privacy and security

Intervention

- Provide detail explanation and justification for data request
- Develop a clear data catalogue to assist integration
- Data request from government agencies not private sectors

- Provide example of the data output for clearer picture
- Develop MoU as necessary to expedite data sharing

Lesson Learnt

Challenges

Implementation
 Cost and self
 sustaining

- Understanding the execution of projects
- Budget limitation
- How to self sustain the operational cost

Intervention

- Develop sustainable business model in the study
- Location owner solicit for local and international funding parallel to the on going stage of work

- Anticipating funding requirement before completion of project
- Develop governance for the implementation and collaborate with others
- Develop partnership with existing city for better understanding
- Location owner syndicate internally and externally for business partners
- Location owner solicit funding before completion of project

Lesson Learnt

Challenges

- 4. Execution agencies and governance
- Lack of high level understanding of operational and execution requirements
- Execution requires funding and identified agencies might not ready to execute
- Concern on limited human resource for execution knowledge on available technology, systems and implementation
- Data security, liability and other data controlled by law

Intervention

- Develop governance for the implementation
- Knowledge sharing
 between cities Transport
 for West Midland for
 better understanding
- Location owner syndicate internally and externally for collaboration partners

- Develop partnership and join custodian for the project in early stage
- Team selection should include the right skill sets not only transport planner but to include data analyse, scientist solution architects etc
- Data security policy can follow national policy

THANK YOU

IskandarMalaysia

IskandarMsia

www.iskandarmalaysia.com.my

J